
QoS-aware and Behavior-based Approximate Matching of Stateful

Web Services

MAHDI SARGOLZAEIahdi Sargolzaei

Universiteit van Amsterdam

Netherlands

M.Sargolzaei@uva.nl

FRANCESCO SANTINIrancesco Santini

University of Perugia

Italy

francesco.santini@dmi.unipg.it

FARHAD ARBABarhad Arbab

CWI∗

Netherlands

Farhad.Arbab@cwi.nl

HAMIDEH AFSARMANESHamideh Afsarmanesh

Universiteit van Amsterdam

Netherlands

H.Afsarmanesh@uva.nl

Abstract: We present a tool that is able to discover stateful web services in a database, ranked according to a simi-

larity score expressing the affinities between each service and a user-submitted query. To determine these affinities,

we also take behavior into account, both of the user’s query and of the services. The names of service operations,

their order of invocation, and their parameters may differ from those required by the user’s query, so long as they

collectively represent similar behavior. We introduce a light extension of WSDL, namely BWSDL to describe the

behavior of web services as well, then we develop a GUI to ease this kind of service specification. We use soft

constraints to formalize the requirements that a user expresses in her query. We argue that a proper formalization

of the behavior of many services that are commonly thought of as stateless, in fact requires a stateful representa-

tion. As such, our method and our tool can accommodate discovery of these services better than alternatives that

consider them as stateless. Our tool uses a procedure to asses an approximate operational-similarity score among

Soft Constraint Automata, which we use as formal models of behavior. The discovery is modelled as a Constraint

Optimization Problem. Finally, we enhance our tool by also considering QoS metrics to further meet user’s needs,

and we present a peer-to-peer implementation to overcome scalability issues.

Key–Words: Weighted argumentation frameworks, Coalition formation, Soft constraint satisfaction problems.

1 Introduction

Web services (WSs) [2] constitute a typical example

of the Service Oriented Computing (SOC) paradigm.

WS discovery is the process of finding a suitable WS

for a given task. To enable a consumer use a service,

its provider usually augments a WS endpoint with

an interface description using the Web Service De-

scription Language (WSDL1). In a loosely-coupled

environment as SOC, automatic discovery becomes

even more complex: users’ decisions must be sup-

ported by taking into account a similarity score that

∗Centrum Wiskunde & Informatica
1Web Services Description Language:

https://www.w3.org/TR/wsdl.

describes the affinity between a user’s requested ser-

vice (the query) and the specifications of actual ser-

vices available in the considered database.

Although several researchers have tackled this

problem and some search tools (e.g., [39]) have

achieved good results, very few of them (see Sec-

tion 9) consider the behavioral signature of a service,

which describes the sequence of operations a user is

actually interested in. This is partly due to the un-

avoidable limitations of today’s standard specifica-

tions, e.g., WSDL, which do not encompass such as-

pects. Despite this, the behavior of stateful services

represents a very important issue to be considered

during discovery, to provide users with an additional

means to refine the search in such a diverse environ-

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 239 Volume 14, 2017

 MAHDI SARGOLZAEI FRANCESCO SANTINI FARHAD ARBAB HAMIDEH AFSARMANESH
Universiteit van Amsterdam University of Perugia CWI* Universiteit van Amsterdam
 NETHERLANDS ITALY NETHERLANDS NETHERLANDS
 M.Sargolzaei@uva.nl francesco.santini@dmi.unipg.it Farhad.Arbab@cwi.nl H.Afsarmanesh@uva.nl

ment.

The impact of considering stateful behavior in

search of services is indeed broader than it may seem

at first. As we argue in Section 2, our notion of state-

ful services in fact covers a much wider class of ser-

vices, and includes many of those that are commonly

considered stateless.

In this paper, we first describe a formal framework

(originally introduced in [5]) that, during a search

procedure, considers both a description of the re-

quested (stateful) service behavior, and a global sim-

ilarity score between services and queries. This un-

derlying framework consists of Soft Constraint Au-

tomata (SCA), where semiring-based soft constraints

(see Section 3) enhance classical (not soft) CA [7]

with a parametric and computational framework that

can be used to express the optimal desired similar-

ity between a query and a service. In our work, we

use CA as our base formalism for the specification of

WS behavior. Since CA models are supported by our

related tool in [20], it can readily be extended to sup-

port soft constraints; overall, we believe automata

models are more understandable and readable for en-

gineers. However, we do not unavoidably depend on

CA: in principle, we can use other formalisms and

then convert their behavior to CA.

The second and main contribution of the work

reported in this paper is an implementation of

such a framework using an approximate operational-

similarity evaluation between two SCA: we im-

plement this inexact comparison between a query

and a service as a Constraint Optimization Problem

(COP), by using JaCoP libraries2. We are eventu-

ally able to rank all search results according to their

similarity with a proposed query. In this way, we

can benefit from off-the-shelf techniques with roots

in Artificial Intelligence (AI), in order to tackle the

complexity of search over large databases. To evalu-

ate a similarity score we use different metrics to mea-

sure the syntactical distance between operations and

between parameter names (see Section 6), e.g., be-

2Java Constraint Programming solver (JaCoP):

http://www.jacop.eu.

tween “getWeather” and “g weather”. These values

are then automatically cast into soft constraints as

semiring values (see Section 3), to enable paramet-

ric composition and optimization during the process

of discovery. Thus, a user may eventually choose a

service that adheres to his needs better than the other

ones in a database.

The exploitation of the behavior during a search

process represents the main feature of our tool. SCA

represent the formal model we use to represent be-

haviors: the different states of an SCA represent the

different states of a stateful service/query. Relying

on SCA allows us to have a framework that comes

along with sound operators for composition and hid-

ing of queries [5].

Afterwards, we describe a QoS-based service rec-

ommendation besides our discovery tool to assist

users in service selection. The reason is that non-

functional properties as QoS parameters play an im-

portant role in user’s selection. By already having

scores representing functional similarity, using fur-

ther QoS metrics in the same framework comes at a

reduced cost. We adopt a lexicographic composition

of soft constraints to capture the trade-off of prefer-

ences in selecting the best fitting WS.

Moreover, we develop a peer-to-peer (P2P) imple-

mentation for the presented tool, with the aim to im-

prove performance and show the scalability of our

approach. The discovery process can be expensive

if computed by a single node, especially in presence

of thousands of services. To avoid this, we pass the

same query to all the available nodes in a network,

and each node computes a list of similarity scores

for its own content that match the query, producing

partial search results. Each node sends such results

along with their computed similarity scores to an ag-

gregator, which merges these rankings from multiple

nodes to create a single set of ranked results. We can

have a number of aggregators organized in a hierar-

chical way: the results of aggregators can be merged

by an aggregator at a higher level.

Finally, we evaluate the quality of the computed

results of our proposed tool using two basic informa-

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 240 Volume 14, 2017

tion retrieval’s metrics, namely precision and recall.

It is not possible to have a meaningful direct compar-

ison against other existing tools due to i) the lack of

widely accepted benchmarks using stateful services

and ii) the dearth of tools working with such services.

Nevertheless, we provide a preliminary study on the

precision of our discovery process.

The rest of this paper is structured as follows.

Section 2 illustrates behavior description of ser-

vices. In Section 3 we summarise the background on

semiring-based soft constraints [10], as well as the

background on SCA [5]. Section 4 shows some ex-

amples of how to use SCA to represent the behavior

of services and the similarity between their opera-

tion and parameter names. In Section 5 we describe

the architecture of a tool that implements the search

introduced in Section 4. In Section 6 we focus on

how we measure the similarity between two different

behavioral signatures. In Section 7 we explain our

QoS-based service recommendation method to as-

sist users in service selection. The evaluation of the

proposed approach is presented in Section 8, while

in Section 8.1 we first describe our scalable peer-

to-peer implementation of the discovery tool and its

performance. In Section 9 we report on the related

work. Finally, in Section 10 we draw final conclu-

sions and explain our future work.

2 Behavioral Description of Ser-

vices

Beyond the semantic description of the operations

that a service can provide, and the syntax of how

they are to be invoked, a specification of the proper

order in which those operations can be invoked is a

prerequisite for the correct implementation and use

of a service. By behavioral specification of a ser-

vice, we mean the specification of all admissible

invocation orders of the operations of that service.

The discovery of suitable services matching a query

must consider the behavioral specification of candi-

date matches. What operations can be performed at

a given point in time by a client of a service may de-

pend on the history of the previous operations that

have already been performed (usually, by the same

client) on that service. Therefore, the specification

of the behavior of a service is, in general, “state-

ful”. However, these states are not always main-

tained within the service itself.

We propose the term exostate to denote the states

of a running service or system that are maintained

outside of the implementation of the service, and we

use the term endostate to capture its internal config-

uration states. Trading endostates for exostates has

important architectural advantages. For instance, be-

cause a RESTful service (where REST stand for Rep-

resentational State Transfer) [40] has only a single

endostate, it never needs to reset itself to recover

from a communication failure that disrupts a client’s

session. RESTful services are commonly referred to

as stateless, because they are designed to have a sin-

gle configuration state, or endostate. However, most

of such services are not truly stateless, in the sense

that to use them properly, a client must still follow a

permissible sequence of invocation of its operations,

encoded in its exostates. The exostates of a REST-

ful service are represented by the values of a set of

context parameters that are passed back and forth be-

tween the service and each of its clients.

Consider a hotel booking example, such as the

RESTful service of [34] illustrated in Figure 1. In

our terminology, as a RESTful service, the imple-

mentation of this service has a single endostate.

However, this service cannot be used properly un-

less, for instance, getHotelDetails operation is in-

voked only after a search operation. Any proper use

of this service requires remembering whether or not

a search has indeed been performed yet, and per-

haps the results of such a search. The REST ar-

chitecture [40] requires such information to be kept

outside of the service implementation itself, on the

client/user side (perhaps as cookies), and passed

back and forth between the client and the service.

From the perspective of a client, however, the state-

less service of [34] depicted in Figure 1 cannot

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 241 Volume 14, 2017

Figure 1: Operations of a restful example: the Hotel

booking service.

be used without considering the specification of its

stateful behavior, which is shown in Figure 2.

The previous example illustrates that many more

systems and services than commonly acknowledged

are truly stateful, in that the specification of their be-

havior involves more than a single state, regardless

of whether such states are implemented as endostates

or exostates. Searching for an appropriate service, as

well as its manual or (semi-)automated adaptation,

composition, or invocation must take its desired be-

havior into account. In this paper, we use the term

“stateful” comprehensively to refer to any service the

specification of whose behavior requires more than a

single state. To the best of our knowledge, previous

work on matching and retrieval of services does not

consider the impact of exostates on suitability of the

behavior of services in their search. This fact makes

our behavior-based discovery tool not directly com-

parable with search and retrieval tools, such as the

work in [39].

WSDL is the most widely used language to syn-

tactically describe a WS interface. Although WSDL

provides required information to establish a connec-

tion with a WS, this specification lacks the behavior

description of the services [1]. As a consequence,

we propose to improve the WSDL through a WS

q0 q1 q2

q3

q4

q5

search getHotelDetail

reserve

getConfirmationID

listMyBookings

getConfirmationID

Figure 2: The CA modeling the behavior of the Hotel

booking service.

behavior-specification (WSBS). We call such exten-

sion as BWSDL, i.e., the WSDL document enriched

by the WSBS.

This paper proposes this lightweight extension of

WSDL to incorporate behavioral information. The

BWSDL extension follows the rules for extending

WSDL [14] to guarantee that any service consumer

unaware of the extensions can still parse, validate

and use the extended version of WSDL files, i.e.,

BWSDL documents. A new namespace “BWSDL”

should be used to identify the tags part of the ex-

tension. Our approach retains the original structure

of the WSDL documents and merely enhances them

by adding a few new tags to the bottom of the XML-

based files. Figure 3 shows an example of the WSDL

extension by considering the behavior description

represented in Figure 2.

We have implemented a GUI to ease the behav-

ioral specification of services and to allow its visu-

alisation. We have extended Fizzim3, which is an

open-source graphical Finite State Machine (FSM)

design tool [46]. Fizzim is written in Java, while its

back-end is written in Perl for portability and ease

of modification. Our extension of the tool opens a

WSDL document as input, and then draws a pre-

liminary graph of its behavioral specification. This

preliminary specification assumes each operation of

the service as a self-loop transition on a single state,

3Fizzim: http://www.fizzim.com.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 242 Volume 14, 2017

Figure 3: An example of WSDL extension by adding behavior description, i.e., BWSDL.

which means the execution of each operation is in-

dependent from other operations.

Figure 4 shows a screen-shot example of a prelim-

inary behavioral specification, obtained by loading a

purchase.wsdl document. The WSDL document de-

scribes that there are two operations provided by the

service, namely “sendPurchaseOrder” and “invoice-

CallbackPT”, so two self-loop transitions are drawn

for them automatically in the preliminary behavioral

specification of the service. Then, the user can ex-

ploit the tool to assemble SCA and immediately vi-

sualise their states and transitions, with the purpose

to specify the proper behavior of the represented ser-

vice. For example, Figure 5 is a revised version of

the description specified in Figure 4. Finally, the de-

signed graphical description of the service behavior

can be exported as a BWSDL document.

3 Soft Constraint Automata

Semiring-based Soft Constraints. A c-

semiring [10] (simply semiring in the sequel)

is a tuple S “ xA,`,ˆ,0,1y, where A is a possibly

infinite set with two special elements 0,1 P A
(respectively the bottom and top elements of A) and

with two operations ` and ˆ that satisfy certain

properties over A: ` is commutative, associative,

idempotent, closed, with 0 as its unit element and 1

as its absorbing element; ˆ is closed, associative,

commutative, distributes over `, 1 is its unit

element, and 0 is its absorbing element. The `

Figure 4: The preliminary behavioral specification

of ”Purchase” service.

operation defines a partial order ďS over A such

that a ďS b iff a ` b “ b; we write a ďS b if

b represents a value better than a. Moreover, `
and ˆ are monotone on ďS , 0 is the min of the

partial order and 1 its max, xA,ďSy is a complete

lattice and ` is its least upper bound operator (i.e.,

a ` b “ lubpa, bq) [10].

Some practical instantiations of the

generic semiring structure are the

boolean xtfalse, trueu,_,^, false, truey,

fuzzy xr0..1s,max,min, 0, 1y, probabilis-

tic xr0..1s,max, ˆ̂ , 0, 1y and weighted

xR` Y t`8u,min, ˆ̀ ,8, 0y (where ˆ̂ and ˆ̀

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 243 Volume 14, 2017

Figure 5: The revised version of the behavioral de-

scription of Figure 4.

respectively represent the arithmetic multiplication

and addition).

A soft constraint [10] may be seen as a constraint

where each instantiation of its variables has an as-

sociated preference. An example of two constraints

defined over the weighted semiring is given in Fig-

ure 7. Given S “ xA,`,ˆ,0,1y and an ordered

finite set of variables V over a domain D, a soft

constraint is a function that, given an assignment

η : V Ñ D of the variables, returns a value of

the semiring, i.e., c : pV Ñ Dq Ñ A. Let

C “ tc | c : D|IĎV | Ñ Au be the set of all pos-

sible constraints that can be built starting from S, D
and V : any function in C depends on the assignment

of only a (possibly empty) finite subset I of V , called

the support, or scope, of the constraint. For instance,

a binary constraint cx,y (i.e., tx, yu “ I Ď V) is

defined on the support supppcq “ tx, yu. Note that

cηrv “ ds means cη1 where η1 is η modified with the

assignment v “ d. Note also that cη is the appli-

cation of a constraint function c : pV Ñ Dq Ñ A
to a function η : V Ñ D; what we obtain is, thus,

a semiring value cη “ a. The constraint function ā
always returns the value a P A for all assignments

of domain values, e.g., the 0̄ and 1̄ functions always

return 0 and 1 respectively.

Given the set C, the combination function b :
CˆC Ñ C is defined as pc1 bc2qη “ c1ηˆc2η [10];

supppc1 b c2q “ supppc1q Y supppc2q. Likewise,

the combination function ‘ : C ‘ C Ñ C is defined

as pc1 ‘ c2qη “ c1η ` c2η [10]; supppc1 ‘ c2q “
supppc1q Y supppc2q. Informally, b/‘ builds a new

constraint that associates with each tuple of domain

values for such variables a semiring element that is

obtained by multiplying/summing the elements as-

sociated by the original constraints to the appropri-

ate sub-tuples. The partial order ďS over C can

be easily extended among constraints by defining

c1 ĎS c2 ðñ @η, c1η ďS c2η.

The search engine of the tool we present in Sec-

tion 5 relies on the solution of Soft Constraint Sat-

isfaction Problems (SCSPs) [10], which can be con-

sidered as COPs. An SCSP is defined as a quadruple

P “ xS, V,D,Cy, where S is the adopted semiring,

V the set of variables with domain D, and C is the

constraint set. SolpP q “
Â

C collects all solutions

of P , each associated with a similarity value s P S.

Soft constraints are also used to define SCA.

Soft Constraint Automata. Constraint Automata

were introduced in [7] as a formalism to describe

the behavior and possible data flow in coordination

models (e.g., Reo [7]); they can be considered as ac-

ceptors of Timed Data Streams (TDS) [4, 7]. We now

recall the definition of TDS from [4], while extending

it using the softness notions described in Section 3:

we name this result as Timed Weighted Data Streams

(TWDS), which correspond to the languages recog-

nised by SCA.4 For convenience, we consider only

infinite behavior and infinite streams that correspond

to infinite “runs” of our soft automata, omitting final

states, including deadlocks.

Definition 1 (Timed Weighted Data Streams)

Let Data be a data set, and for any set X , let

Xω denote the set of infinite sequences over

4TWDSs do not imply time constraints, and thus our (soft)

CA are not “timed” [7].

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 244 Volume 14, 2017

xλ, l, ay P Data
ω ˆ R

ω
` ˆ A

ω
such that, @k ě 0 : lpkq ă lpk ` 1q and lim

kÑ`8

lpkq “ `8

Thus, a TWDS triplet xλ, l, ay consists of a data

stream λ P Dataw, a time stream l P R
ω
`, and a

preference stream a P Aω; k is a natural number that

is used to enumerate the elements of each stream.

The time stream l indicates, for each data item λpkq,

the moment lpkq at which it is exchanged (i.e., being

input or output), while the apkq is a preference score

related to λpkq.

In [5] we paved the way to the definition of Soft

Constraint Automata (SCA), which represent the

theoretical foundation behind our tool. Use a finite

set N of names, e.g., N “ tn1, . . . , npu, where ni

(i P 1..p) is the i-th input/output port. The transitions

of SCA are labelled with pairs consisting of a non-

empty subset N Ď N and a soft (instead of crisp as

in [7]) data-constraint c. Soft data-constraints can be

viewed as an association of data assignments with a

preference for that assignment. Formally,

Definition 2 (Soft Data-Constraints) A soft data-

constraint over a set of port names N and data val-

ues Data, is an expression produced by the following

grammar, with c as its distinguished symbol:

c ::“ f | f ‘ f

f ::“ 0̄ | 1̄ | c b c | pcq | c

where for N Ď N , c represents a function c :
ptdn | n P Nu Ñ Dataq Ñ A over a semiring S “
xA,`,ˆ,0,1y, the set of variables tdn | n P Nu
constitute the support of the constraint, and tdn | n P
Nu Ñ Data is a function that associates with every

variable dn in this support, a data item v P Data
that passes through the port n P N .

Informally, a soft data-constraint is a function that

returns a preference value a P A given an assign-

ment for the variables tdn | n P Nu in its support.

In the sequel, we write SDCpN,Dataq, for a non-

empty subset N of N , to denote the set of soft data-

constraints. We will use SDC as an abbreviation for

SDC pN ,Dataq. Note that in Definition 2 we as-

sume a global data domain Data for all names, but,

alternatively, we can assign a data domain Datan for

every variable dn.

We state that an assignment η for the variables

tdn | n P Nu satisfies c with a preference of a P A,

if cη “ a.

In Definition 3 we define SCA. Note that by using

the boolean semiring, thus within the same semiring-

based framework, we can exactly model the “crisp”

data-constraints presented in the original definition

of CA [7]. Therefore, CA are subsumed by Def-

inition 3. Note also that weighted automata, with

weights taken from a proper semiring, have already

been defined in the literature [19]; in SCA, weights

are determined by a constraint function instead.

Definition 3 (Soft Constraint Automata) A Soft

Constraint Automaton over a domain Data, is a tuple

TS “ pQ,N ,ÝÑ,Q0, Sq where i) S is a semiring

xA,`,ˆ,0,1y, ii) Q is a finite set of states, iii) N

is a finite set of names, iv) ÝÑ is a finite subset of

Q ˆ 2N ˆ SDC ˆ Q, called the transition relation

of TS , and v) Q0 Ď Q is the set of initial states.

We write q
N,c
ÝÝÑ p instead of pq,N, c, pq PÝÑ.

We call N the name-set and c the guard of the

transition. For every transition q
N,c
ÝÝÑ p we require

that i) N ‰ H, and ii) c P SDCpN,Dataq (see

Definition 2). TS is called finite iff Q,ÝÑ and the

underlying data-domain Data are finite.

The intuitive meaning of an SCA TS as an opera-

tional model for service queries is similar to the in-

terpretation of labelled transition systems as formal

models for reactive systems. The states represent the

configurations of a service. The transitions represent

the possible one-step behavior, where the meaning

of q
N,c

ÝÝÑ p is that, in configuration q, the ports in

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 245 Volume 14, 2017

q0 q1

tLu
c1

tMu
c2

Figure 6: A Soft Constraint Automaton.

Figure 7: c1 and c2 in Fig 6.

n P N have the possibility of performing I/O op-

erations that satisfy the soft guard c and that leads

from configuration q to p, while the ports in N zN
do not perform any I/O operation. Each assignment

of variables tdn | n P Nu represents the data associ-

ated with ports in N , i.e., the data exchanged by the

I/O operations through ports in N .

In Figure 6 we show an example of a (determin-

istic) SCA. In Figure 7 we define the weighted con-

straints c1 and c2 that describe the preference (e.g.,

a monetary cost) for the two transitions in Figure 6,

e.g., c1pdL “ 2q “ 5.

In [5] we have also softened the synchronisation

constraints associated with port names in N over the

transitions. This allows for different service opera-

tions to be considered somehow similar for the pur-

poses of a user’s query. Note that a similar service

can be used, e.g., when the “preferred” one is down

due to a fault, or when it offers bad performance,

e.g., due to the high number of requests. Defini-

tion 4 formalises the notion of soft synchronisation-

constraint.

Definition 4 (Soft Synchronisation-constraint)

A soft synchronisation-constraint is a function

c : pV Ñ N q Ñ A defined over a semiring

S “ xA,`,ˆ,0,1y, where V is a finite set of

variables for each I/O port, and N is the set of I/O

port names of the SCA.

4 Representing the behavior of Ser-

vices with SCA

In this section we show how the formal framework

presented in Section 3 (i.e., SCA) can be used to

consider a similarity score between a user’s query

and the service descriptions in a database, in order to

find the best possible matches for the user.

We begin by considering how parameters of op-

erations can be associated with a score value that

describes the similarity between a user’s request

and an actual service description in a database.

We suppose to have two different queries: the

first, getByAuthorpFirstnameq, which is used to

search for conference papers using the Firstname

(i.e., the parameter name) of one of its au-

thors; the name of the invoked service opera-

tion is, thus, getByAuthor. The second query,

getByTitle(Conference), searches for con-

ference papers, using the title of the Conference

wherein the paper has been published; the name of

the invoked operation is getByTitle. These two

queries are represented as the SCA (see Section 3) q0
and q1, in Figure 8. Soft constraints c1 and c2 in Fig-

ure 9, define a similarity score between the parameter

name used in a query and all parameter names in the

database (for the same operation name, i.e., either

getByAuthor or getByTitle). These similar-

ity scores can be modelled with the fuzzy semiring

xr0..1s,max,min, 0, 1y wherein the aim is to max-

imise the similarity (` ” max) between a request

and a service returned as a matching result. Con-

straint c1 in Figure 9 states that similarity is full if

a getByAuthor operation in the database takes

Firstname as parameter (since 1 is the top pref-

erence of the fuzzy semiring), less perfect, that is 0.8,

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 246 Volume 14, 2017

q0 q1

tgetByAuthoru
c1

tgetByT itleu
c2

Figure 8: Two soft Constraint Automata represent-

ing two different queries.

Figure 9: The definitions of c1 and c2 in Figure 8.

if it takes Fullname (usually, Fullname includes

Firstname), or even less perfect, that is 0.2, if it

takes Lastname only. Similar considerations apply

to the operation name getByTitle (see Figure 8)

and c2 in Figure 9. Similarity scores are automati-

cally extracted as explained in Section 5.

Lorem ipsum dolor sit amet, consectetuer adip-

iscing elit. Ut purus elit, vestibulum ut, placerat

ac, adipiscing vitae, felis. Curabitur dictum gravida

mauris. Nam arcu libero, nonummy eget, con-

sectetuer id, vulputate a, magna. Donec vehicula

augue eu neque. Pellentesque habitant morbi tris-

tique senectus et netus et malesuada fames ac turpis

egestas. Mauris ut leo. Cras viverra metus rhon-

cus sem. Nulla et lectus vestibulum urna fringilla

ultrices. Phasellus eu tellus sit amet tortor gravida

placerat. Integer sapien est, iaculis in, pretium quis,

viverra ac, nunc. Praesent eget sem vel leo ultri-

ces bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur

auctor semper nulla. Donec varius orci eget risus.

Duis nibh mi, congue eu, accumsan eleifend, sagit-

tis quis, diam. Duis eget orci sit amet orci dignissim

rutrum.

Nam dui ligula, fringilla a, euismod sodales, sol-

licitudin vel, wisi. Morbi auctor lorem non justo.

Nam lacus libero, pretium at, lobortis vitae, ultricies

et, tellus. Donec aliquet, tortor sed accumsan biben-

dum, erat ligula aliquet magna, vitae ornare odio me-

tus a mi. Morbi ac orci et nisl hendrerit mollis. Sus-

pendisse ut massa. Cras nec ante. Pellentesque a

nulla. Cum sociis natoque penatibus et magnis dis

parturient montes, nascetur ridiculus mus. Aliquam

tincidunt urna. Nulla ullamcorper vestibulum turpis.

Pellentesque cursus luctus mauris.

Suppose now that our database contains the four

services represented in Figure 10. All these services

are stateless, i.e., their SCA have a single state each.

For instance, service a has only one invokable op-

eration whose name is getByAuthor, which takes

Lastname as parameter. Service d has two distinct

operations, getByAuthor and getByTitle.

According to the similarity scores expressed by

c1 and c2 in Figure 9, queries q0 and q1 in Fig-

ure 8 return different result values for each opera-

tion/service, depending on the instantiation of vari-

ables dgetByAuthor and dgetByTitle . Considering q0,

services a, b, and d have respective preferences of

0.2, 1, and 0.8. If query q1 is used instead, the pos-

sible results are operations c and d, with respective

preferences of 1 and 0.3. When more than one ser-

vice is returned as the result of a search, the end user

has the freedom to choose the best one according to

his preferences: for the first query q0, the user can

opt for service b, which corresponds to a preference

of 1 (i.e., the top preference), while for query q1 the

user can opt for c (top preference as well).

We now move from parameter names to oper-

ation names, and show that by using soft syn-

chronisation constraints (see Definition 4), we can

also compute a similarity score among them. For

example, suppose that a user queries q0 in Fig-

ure 8. The possible results are services a, b and

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 247 Volume 14, 2017

Figure 10: A database of services for the queries in Figure 8; d performs both kinds of search (by author

and by title).

d in the database of Figure 10, since service c has

an operation named getByTitle, different from

getByAuthor. However, the two services are

somehow similar, since they both return a paper even

if the search is based either on the author or on

the conference. As a result, a user may be satis-

fied also by retrieving (and then, using) service c.

This can be accomplished with the query in Fig-

ure 11, where cxpx “ getByAuthorq “ 1, and

cxpx “ getByTitleq “ 0.7. Note that we no longer

deal with constraints on parameter names, but on op-

eration names. Then, we can also look for services

that have similar operations, not only similar param-

eters in operations.

However, our main goal is to compute a similar-

ity score considering also the behavior of queries and

services. For instance (the query in Figure 12), a user

may need to find an on-line purchase service satis-

fying the following requirements: i) shipping activ-

ity comes before charging activity, ii) to purchase a

product, the requester first needs to log into the sys-

tem and finally log out of the system, and iii) filling

the electronic basket of a user may consist of a suc-

cession of “add-to-basket” actions. In Section 6 we

will focus on this aspect.

Constraints on parameters (their data-types as

well) and operation names can be straightforwardly

q0

txu
cxpx “ getByAuthorq “ 1
cxpx “ getByTitleq “ 0.7

Figure 11: A similarity-based query for the

Author/Title example.

q0 q1 q2 q3

tx1u
cx1

px1 “ Loginq “ 1

tx2u
cx2

px2 “ LogOutq “ 1

tx3u
cx3

px3 “ AddToBasketq “ 1

tx4u
cx4

px4 “ AddToBasketq “ 1

tx5u
cx5

px5 “ Shippingq “ 1

tx6u
cx6

px6 “ Chargingq “ 1

Figure 12: A similarity-based query for the on-line pur-

chase service.

mixed together to represent a search problem where

both are taken into account simultaneously for opti-

mization. The tool in Section 5 exploits this kind of

search: the similarity functions represented by con-

straints are computed through the composition of dif-

ferent syntactic similarity metrics.

5 Tool Description

Conceptually, our behaviorally-based WS discovery

proceeds in four successive steps: i) generate a Web

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 248 Volume 14, 2017

Service Behavior Specification (WSBS) for each reg-

istered WS (a WSBS is basically a CA), ii) process

preference-oriented queries (basically represented as

SCA), iii) compute an operational similarity-score

between a query and our services as an SCSP (see

Section 3), and finally, iv) solve this problem (see

Section 3). Note that we are also able to translate

other kinds of behavioral service specification, as

WS-BPEL5, into (S)CA [12].

Step i is needed because no standard language or

tool exists to specify the behavior of stateful WSs.

Therefore, we have to define our own WSBS as a

behavioral specification for WSs, using WSDL and

some extra necessary annotations. In step ii, we ob-

tain a query from a user and we process it to find

the similarities between the request and the actual

services in the database. In step iii, we set up an

SCSP (see Section 3), where soft-constraint func-

tions are assembled by using the similarity scores

derived in step ii; at the same time, we define those

constraints that compare the two behavioral signa-

tures (query/service), and measure their similarity.

Finally, we find the best solutions for this SCSP, and

we return them to the user. These steps are imple-

mented by different software modules, whose global

architecture is defined in Figure 13.

WSDL Parser. We rely on a repository of WSDL

documents that are captured in a registry, i.e., the

WSDL Registry (see Figure 13). WSDL is an XML-

based standard for syntactical representation of WSs,

which is currently the most suitable for our purpose.

First, we parse these XML-based documents to ex-

tract the names and interfaces of service operations

using the Axis2 technology.6

WSBS Generator. While a WSDL document

specifies the syntax and the technical details of a ser-

5WS-Business Process Execution Language, 2.0:

http://tinyurl.com/czkoolw.
6http://axis.apache.org/axis2/java/core/.

vice interface, it lacks the information needed to con-

vey its behavioual aspects. In fact, a WSDL docu-

ment only reveals the operation names and the names

and data types of their arguments; it does not indicate

the permissible operation sequences of a service. If

we know that a WS is stateless, then all of its op-

erations are permissible in any order. For a stateful

service, however, we need to know which of its op-

erations is (not) allowed in each of its states. In [29],

some of the authors of this paper have already for-

malised the behavior of a WS (i.e., the WSBS) in

terms of CA [7]. Therefore, we adopt the Extensible

Coordination Tools (ECT) [3], which consist of a set

of plug-ins for the Eclipse platform7, as the core of

the WSBS Generator, in order to generate a CA to

specify the externally observable behavior of a ser-

vice. Normally, CA are used as operational seman-

tics for Reo circuits [7]. The resulting CA are cap-

tured as XML documents, where the ăstatesą and

ătransitionsą tags identify the structure of each au-

tomaton. It is also possible to indicate the behavior

of WSs in text files, in a simplified form. The file in

Figure 15 describes the service represented in Fig-

ure 14. In our architecture, all WSBSs are stored in

a WSBS Registry (see Figure 13).

We can automatically extract a single-state au-

tomaton from the operations defined in a WSDL

document describing a stateless WS: we use this

support-tool to extract the automata for the real-

world WSs used in our following experiment. For

stateful WSs, we developed an interactive tool that

(using a GUI) allows a programmer (see Figure 13)

to visually create the automaton states describing the

behavior of a service, and tag its transitions with the

operations defined in its WSDL document.

Query Processor. At search time, a user spec-

ifies a desired service by means of a text file, and

feeds it to this module. An example of our query

7http://reo.project.cwi.nl/reo/wiki/Tools.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 249 Volume 14, 2017

Figure 13: The architecture of the tool.

is represented in Figure 16. The query format al-

lows to specify all desired transitions among states,

including operation names, and the names and data

types of their arguments. It enables search for multi-

ple similar services (separated by “or” operators) at

the same time while the tool ranks all the results in

the same list. Finally, the tool assigns to each ser-

vice description a preference score prescribed by the

user. A user may use a score (e.g., fuzzy preferences

in r0..1s) to weigh all the results, as represented in

Figure 16. Each query is represented as an SCA [5]

(see Section 3), since preferences can be represented

by soft constraints. This textual representation re-

sembles a list of WSBSs, each of them associated

with a preference score (see Figure 16 and Figure 15

for a comparison).

Similarity Calculator. As Figure 13 shows, this

module requires two inputs: the WSBSs and the

processed query. It returns three different kinds of

similarity scores, which reflect the similarities be-

tween one service and one query i) operations names,

ii) names of input-parameters of operations, and iii)

data types of input-parameters. We use different

string similarity-metrics (also known as string dis-

q0 q1

tAddToBasketu

tPurchaseu

tAddToBasketu

Figure 14: An example of WSBS.

q0 AddToBasket q1;

q1 AddToBasket q1;

q1 Purchase q0.

Figure 15: Text file representing the WSBS in

Figure 14.

tance functions) as the functions to measure the sim-

ilarity between two text-strings. We have chosen

three of the most widely known metrics, the Lev-

enshtein Distance, the Matching Coefficient, and the

QGrams Distance [13]. Each of these metrics oper-

ates with two input strings, and returns a score esti-

mating their similarity. Since each function returns

a value in r0..1s, we average these three scores to

merge them into a single value still in r0..1s.

These similarity scores are subsequently used by

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 250 Volume 14, 2017

the Constraint Assembler in Figure 13, in order to

define the similarity functions that are translated into

soft constraints, as explained in Section 4. The rep-

resentation of the search problem in terms of con-

straints is completely constructed by the Constraint

Assembler module, while the Similarity Calculator

only provides it with similarity scores.

Constraint Assembler. This module produces a

model of the discovery problem, in the form of op-

erational similarity-evaluation (see Section 6), as an

SCSP (see Section 3). To do so, it represents all

preference and similarity requirements as soft con-

straints. In order to assemble these constraints, we

use JaCoP, which is a Java library that provides

a finite-domain constraint programming paradigm.

We have made ad-hoc extensions to the crisp con-

straints supported by JaCoP in order to equip them

with weights, and we have exploited the possibil-

ity to minimise/maximise a given cost function to

solve SCSPs. Specifically, we have expressed the

WSs discovery problem as a fuzzy optimization

problem, by implementing the fuzzy semiring, i.e.,

xr0..1s,max,min, 0, 1y (see Section 3).

For instance, SumWeight is a JaCoP constraint that

computes a weighted sum as the following pseudo-

code: w1 ¨x1 `w2 ¨x2 `w3 ¨x3 “ sum , where sum

represents the global syntactic similarity between

two operation in terms of the similarity between their

operation names (x1), their argument names (x2),

and their argument types (x3). These scores are pro-

vided by the Similarity Calculator. Moreover, we

can tune the weights w1, w2, and w3 to give more or

less importance to the three different parameters. In

the experiments in Section 5 we use equal weights.

In Section 6, we discuss how to compute how much

two behavioral signatures (query/service) are similar,

and how we construct the general constraint-based

model.

SCSP solver. Finally, after the specification of the

model in terms of variables and constraints, a search

for a solution of the assembled SCSP can be started.

This represents the final step (see Figure 13). The

result can be generalised as a ranking of services in

the considered database: at the top positions we find

the services that are more similar to a user’s request.

Experimental Results on a Stateless Scenario. In

this section we show the precision results of our tool

through a scenario involving stateless real WSs. Fig-

ure 16 shows a single-state query that searches for

WSs that return the “weather” forecast for a location

indicated by the name of a “city” (with a user’s pref-

erence of 1) or its “zip-code” (preference of 0.8).

We have developed a WS crawler to find WSDL

documents, and check their validations. We retrieved

more than 2000 different WSDL documents, but

about 1000 of their corresponding WSs are valid.

The validated WSDL documents form our WSDL

Registry in Figure 13.

Lorem ipsum dolor sit amet, consectetuer adip-

iscing elit. Ut purus elit, vestibulum ut, placerat

ac, adipiscing vitae, felis. Curabitur dictum gravida

mauris. Nam arcu libero, nonummy eget, con-

sectetuer id, vulputate a, magna. Donec vehicula

augue eu neque. Pellentesque habitant morbi tris-

tique senectus et netus et malesuada fames ac turpis

egestas. Mauris ut leo. Cras viverra metus rhon-

cus sem. Nulla et lectus vestibulum urna fringilla

ultrices. Phasellus eu tellus sit amet tortor gravida

placerat. Integer sapien est, iaculis in, pretium quis,

viverra ac, nunc. Praesent eget sem vel leo ultri-

ces bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur

auctor semper nulla. Donec varius orci eget risus.

Duis nibh mi, congue eu, accumsan eleifend, sagit-

tis quis, diam. Duis eget orci sit amet orci dignissim

rutrum.

Nam dui ligula, fringilla a, euismod sodales, sol-

licitudin vel, wisi. Morbi auctor lorem non justo.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 251 Volume 14, 2017

q0 Weather(City:string) q0, [1.0] or q0 Weather(Zipcode:string) q0, [0.8]

Figure 16: A single-state query asking for the weather conditions over a City, or a Zipcode. Different user

preference scores are represented within square brackets.

Nam lacus libero, pretium at, lobortis vitae, ultricies

et, tellus. Donec aliquet, tortor sed accumsan biben-

dum, erat ligula aliquet magna, vitae ornare odio me-

tus a mi. Morbi ac orci et nisl hendrerit mollis. Sus-

pendisse ut massa. Cras nec ante. Pellentesque a

nulla. Cum sociis natoque penatibus et magnis dis

parturient montes, nascetur ridiculus mus. Aliquam

tincidunt urna. Nulla ullamcorper vestibulum turpis.

Pellentesque cursus luctus mauris.

Table 1 shows top-ten ranked experiment results,

where the other WSs obtained a similarity score less

than 0.3. From left to right the columns respectively

show the position in the final ranking, the obtained

fuzzy score, the WS name, and, lastly, the matched

service operation.

6 On Comparing Behavior Signa-

tures

In this section we zoom inside the Constraint Assem-

bler component that we introduced in Section 5. We

describe how we can approximate the behavior of a

posed query with that of a service, since a perfect

match can be uncommon.

The basic idea is to compute an operational

similarity-score between two automata, respectively

representing a query and a WS in a database. The

notion of operational similarity relation is obtained

by relaxing the equality of output traces: instead of

requiring them to be identical, we require that they

remain “close”. Metrics (represented as semirings,

in our case) essentially quantify how well a sys-

tem is approximated by another based on the dis-

tance between their observed behaviors. In this way,

we are able to consider different transition-labels by

estimating a similarity score between their opera-

tion interfaces, and different numbers of states. To

compute such operational similarity with constraints,

we exploit constraint-based graph matching tech-

niques [42]; thus, we are able to “compress” or “di-

late” one automaton structure into another. We take

advantage of the notion of sub-graph epimorphism,

corresponding to the application of node delete and

merge operations to pass from an SCA to another

when checking operational similarity. The existence

of an epimorphism from a graph to another is an NP-

Complete problem [23].

In the following, we use the query example in

Figure 17, and the service example in Figure 18 to

describe our constraint-based model for the search.

We subdivide this description by considering how we

match the different elements of automata (transitions

or states), and how we finally measure their overall

similarity.

States. To represent our signature-match prob-

lem, for each of the query-automaton states (set Q)

we define a variable that can be assigned to one or

several states of a service (set S). For this pur-

pose, we use SetVar, i.e., JaCoP variables defined

as ordered collections of integers. Considering our

running example, one of the possible matches be-

tween these two signatures can be given by M ”
q0 “ ts0, s1, s3u, q1 “ ts2u. This matching is rep-

resented in Figure 17 and Figure 18 using grey and

black labels for states. Clearly, the proposed mod-

elling solution represents a relationship and not a

function, since a query state can be associated with

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 252 Volume 14, 2017

Table 1: The ranking of the top-ten matched WSs, based on the query represented in Figure 16.
Rank Score Name of WS Interface of the operation

1 0.69 globalweather GetWeatherpCityName : stringq

2 0.54 usweather GetWeatherReportpCityName : stringq

3 0.5 Weather Get WeatherpZIP : stringq

4 0.48 WeatherWS getWeatherptheCityCode : string, theUserID : stringq

5 0.44 usweather GetWeatherReportpZipCode : stringq

6 0.42 WeatherForecast GetWeatherByZipCodepZipCode : stringq

7 0.4 WeatherForecast GetWeatherByP laceNamepP laceName : stringq

8 0.36 weatherservice GetLiveCompactWeatherByStationIDpstationid : string,

un : UnitType,ACode : stringq

9 0.34 weatherinfo WeatherInfoByPstcodepPostCode : stringq

10 0.30 weather-area GetWeatherAreapid : stringq

q0 q1

l1 : AddBasket

l3 : Charge

l2 : AddBasket

Figure 17: A query example.

s0 s1 s2 s3
m1 : Login

m6 : LogOut

m2 : AddToBasket

m3 : AddToBasket

m4 : Shipping

m5 : Charging

Figure 18: A possible service in a database related to

the query in Figure 17.

one or more service-states; on the other hand, dif-

ferent query states can be associated with the same

service state, in case a query has more states than a

service. Thus, to match the two automata we allow to

“merge” together those states that are connected by

a transition (e.g., s0, s1 and s3 in Figure 18) into a

single state (e.g., q0) at the cost of incurring a certain

penalty.

Transitions. In our running example, if we match

the two behaviors as defined by M, we conse-

quently obtain a match for the transitions (and their

labels) as well. Our model has a variable (Int-

Var, in JacoP) for each of the transitions in a query

automaton; considering the example in Figure 17,

we have three variables l1, l2, l3. In Figure 17 and

Figure 18 we label each transition with its identi-

fier (l1, . . . , l3,m1, . . . ,m6), and a string that rep-

resents its related operation-name (in this example,

we ignore parameter names and types for the sake

of brevity). Thus, the full match-characterisation

is now M ” q0 “ ts0, s1, s3u, q1 “ ts2u, l1 “
m2, l2 “ m3, l3 “ m5. Note that, if a query has

more transitions than a service, it may happen to

be impossible to match all of them; for this reason,

since we need to assign each of the variables in or-

der to find a solution, we assign a mark NM (i.e., Not

Matched) to unpaired transitions.

Automata Epimorphism. Algorithm 1 shows our

approach to find sub-graph epimorphism of the au-

tomata to match behavior specification of the query

and services. The idea is that we can merge two or

more neighbouring states, i.e. states connected by

transitions, to one single state. Every such merged

state needs to adjust its transitions. In this way every

in-coming transition to one of the combined states,

comes to the new state (the merged one). Similarly,

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 253 Volume 14, 2017

outgoing transitions of both states become outgoing

transitions of the combined state.

For example, we can find two automata epimor-

phisms for the service represented in Figure 18

with the corresponding query-automaton depicted

in Figure 17. The state cardinality of the service-

automaton is four, while it is two for the query-

automaton. Therefore there are two ways to merge:

(1) merge three neighbouring states into one state

besides the other state, (2) merge two neighbouring

states into one state, and merge the remaining two

neighbouring states into another single state. Fig-

ure 19 shows two possible automata epimorphisms

for this example. These two results can be obtained

through Algorithm 1 at the following steps (as a re-

minder, |Q| is 2 and |S| is 4): Lorem ipsum do-

lor sit amet, consectetuer adipiscing elit. Ut purus

elit, vestibulum ut, placerat ac, adipiscing vitae, felis.

Curabitur dictum gravida mauris. Nam arcu libero,

nonummy eget, consectetuer id, vulputate a, magna.

Donec vehicula augue eu neque. Pellentesque habi-

tant morbi tristique senectus et netus et malesuada

fames ac turpis egestas. Mauris ut leo. Cras viverra

metus rhoncus sem. Nulla et lectus vestibulum urna

fringilla ultrices. Phasellus eu tellus sit amet tor-

tor gravida placerat. Integer sapien est, iaculis in,

pretium quis, viverra ac, nunc. Praesent eget sem

vel leo ultrices bibendum. Aenean faucibus. Morbi

dolor nulla, malesuada eu, pulvinar at, mollis ac,

nulla. Curabitur auctor semper nulla. Donec varius

orci eget risus. Duis nibh mi, congue eu, accumsan

eleifend, sagittis quis, diam. Duis eget orci sit amet

orci dignissim rutrum.

The first sub-graph epimorphism is the result of

step i “ 2, so three (i.e., i ` 1) neighbouring states

are merged into one state (i.e., state s0 is merged

with state s1 and state s3, and then becomes s0’), and

the other state, i.e., state s2 forms the other node of

the new automaton. By ignoring the dissolved tran-

sitions (i.e., internal transitions among the merged

nodes), the transition matrix of the new automaton

(merged one) is:

T “

„

Null AddToBasket

Shipping AddToBasket



The second sub-graph epimorphism is the result of

step i “ 1, so two (i.e, i` 1) neighbouring states are

merged into one state (i.e., state s0 is merged with

state s1, and then becomes s0’), and the other two

states form the other node of the new automaton:

state s2 is merged with state s3, and then becomes

s1’. By ignoring the dissolved transitions (i.e., inter-

nal transitions among the merged nodes) the transi-

tion matrix of the new automaton (merged one) is:

T “

„

Null AddToBasket

Shipping Charging



In order to compare the behavior of the query

and services, we replace the transition matrix T of

each automaton by the adjacency matrix A, where

Ari, js “ 0 if T ri, js is Null, and 1 otherwise. While

the transition matrices of the two possible automata

epimorphisms of the above example are different (at

T r1, 1s), their adjacent matrixes both are the same

with the adjacent matrix of the query and it is:

A “

„

0 1

1 1



It means that new automata epimorphisms are

behaviorally matched with the query, but due to

the incurring of the penalty factor (Q{S), their

state similarity-scores would be 0.5. The transition

similarity-scores for these two alternatives, which

are derived from a comparison between matched la-

bels, would be respectively 0.36 and 0.43. There-

fore, the second epimorphism that results in a higher

similarity score is considered during the discovery

process for the service.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 254 Volume 14, 2017

Figure 19: Two possible sub-graph epimorphisms considering Figure 18.

Operational-similarity of the Match. In this

paragraph we show how to compute a global similar-

ity score Γ for a match M (i.e., ΓpMq). We consider

two different kinds of scores, i) a state similarity-

score, σpMq, is derived from how much we need

to (de)compress the behavior (in terms of number of

states) to pass from one signature to another, and ii)

a transition similarity-score, θpMq, is derived from

a comparison between matched labels. In a sim-

ple case, we can consider the mean value ΓpMq “
pσpMq ` θpMqq{2, or we can imagine more so-

phisticated aggregation functions. A rather straight-

forward function is σpMq “ minp#SM,#QMq{
maxp#SM,#QMq (if #SM “ #QM, our match

is perfect), but we can think of non-linear functions

as well. The score θpMq is computed by aggre-

gating the individual ssim syntactic similarity-scores

(computed by the Similarity Calculator proposed in

Section 5) obtained for each label match, and then

averaging on the number of matched labels. In

our example, θpMq “ pssimplabel l1 , labelm2
q `

ssimplabel l2 , labelm4
q ` ssimplabel l3 , labelm5

qq{3.

An Experiment with Stateful Services. As we

discussed in Section 2, proper descriptions of the be-

havior of many of (implementations of) stateless ser-

vices are stateful. Therefore, we enrich our regis-

tered WSs with behavioral descriptions and use the

query represented in Figure 20 against this database.

According to this stateful query, the ideal service

matching the query first performs the Add-to-Basket

operation one or more times, and then completes the

required shipping processes, and finally charges the

costumer for its purchase. Table 2 shows the results

of this experiment: the transition similarity-score

θpMq, the state similarity-score σpMq, the global

similarity-score ΓpMq, and the rank Rk of each ser-

vice. These results match our expectations, since the

behavior of S6 is identical to the behavior of our

query, and the behaviors of S3, S1, and S2 are ap-

proximately close to the behavior of our query.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 255 Volume 14, 2017

q0 AddBasket() q1; q1 AddBasket() q1; q1 Shipping() q2; q2 Charge() q0, [1.0]

Figure 20: A stateful query asking for a purchase-online scenario including buying, shipping and charging.

Lorem ipsum dolor sit amet, consectetuer adip-

iscing elit. Ut purus elit, vestibulum ut, placerat

ac, adipiscing vitae, felis. Curabitur dictum gravida

mauris. Nam arcu libero, nonummy eget, con-

sectetuer id, vulputate a, magna. Donec vehicula

augue eu neque. Pellentesque habitant morbi tris-

tique senectus et netus et malesuada fames ac turpis

egestas. Mauris ut leo. Cras viverra metus rhon-

cus sem. Nulla et lectus vestibulum urna fringilla

ultrices. Phasellus eu tellus sit amet tortor gravida

placerat. Integer sapien est, iaculis in, pretium quis,

viverra ac, nunc. Praesent eget sem vel leo ultri-

ces bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur

auctor semper nulla. Donec varius orci eget risus.

Duis nibh mi, congue eu, accumsan eleifend, sagit-

tis quis, diam. Duis eget orci sit amet orci dignissim

rutrum.

Nam dui ligula, fringilla a, euismod sodales, sol-

licitudin vel, wisi. Morbi auctor lorem non justo.

Nam lacus libero, pretium at, lobortis vitae, ultricies

et, tellus. Donec aliquet, tortor sed accumsan biben-

dum, erat ligula aliquet magna, vitae ornare odio me-

tus a mi. Morbi ac orci et nisl hendrerit mollis. Sus-

pendisse ut massa. Cras nec ante. Pellentesque a

nulla. Cum sociis natoque penatibus et magnis dis

parturient montes, nascetur ridiculus mus. Aliquam

tincidunt urna. Nulla ullamcorper vestibulum turpis.

Pellentesque cursus luctus mauris.

7 QoS-aware Service Discovery

While the proposed search engine discovers ser-

vices according to their functional properties, non-

functional properties, e.g., QoS parameters, play an

important role in a user’s selection. When many web

services offer similar capabilities, it is necessary to

also consider a set of non-functional properties of

services as selection criteria. Functional properties

describe what a service can do, while non-functional

properties depict how well the service can satisfy its

functional properties.

Besides the set of functional requirements (i.e.

syntactical and behavioral matching of services),

which we model as soft constraints, we can also en-

code any set of QoS requirements as soft constraints

in order to assist users in service selection. In prin-

ciple, we can compute QoS ranking as an extra crite-

rion for search, but doing so may impact the results

by giving higher ranking to completely irrelevant ser-

vices that have high QoS values. To avoid this prob-

lem, we use the lexicographic ordering.

We compose all the constraints representing func-

tional and non-functional requirements in the con-

straint assembler, but in a given lexicographic order:

different criteria have different precedence. Assume

the user considers three QoS criteria for the ser-

vice selection including Availability, Reliability, and

Response-Time. He/she also states a lexicographic

order among these criteria: the first preferred compo-

nent is Reliability, the second one is Response-Time,

and the last one is Availability. In order to combine

functional requirements and QoS constraints into a

single semiring for match-making of services, we de-

fine the lexicographic product of semirings.

Our definition of lexicographic ordering derives

from a lattice-based distance function we define in

Definition 5. We use this function to exploit the

structure of the complete lattice defined by xA,`y

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 256 Volume 14, 2017

1. Let | Q | be the cardinality of the

query-automaton states, and | S | be the

cardinality of a service-automaton

2. If p| Q |ă| S |q then

%Find all possible sequences of merges for

neighbouring states in the service-automaton

to reduce its state’s cardinality to | Q |.
2.1. For(i “| S | ´ | Q |; i ě

p|S| ´ |Q|q{2; i “ i ´ 1)

2.1.1. Merge i ` 1 neighbouring states of

the service to a single state.

2.1.2. Merge p| S | ´ | Q |q ´ i ` 1

neighbouring states of the service to a

single state.

2.1.3. Adjust the transitions for the

merged states.

2.1.3. If (the new automaton is equal to

the query-automaton) then

consider it as a sub-graph epimorphism

of the service-automaton.

3. If p|Q| ą |S|q then

Find all possible sub-graph epimorphism of

the query-automaton to the

service-automaton similar to 2.1
Algorithm 1: The merging algorithm.

(see in the following why and how). A complete lat-

tice is a partially ordered set in which all subsets have

both a supremum (1) and an infimum (0).

Definition 5 (Lattice-based distance) The lattice-

based distance is a function dist : A ˆ A Ñ N de-

fined on a semiring S “ xA,`,ˆ,0,1y, that returns

the distance between two elements (absolute value)

on the lattice defined by xA,`y. In the following we

provide two examples, depending if A is

Finite and partially ordered. Given a1, a2 P A,
distpa1, a2q is the length of the shortest path be-

tween a1 and a2 on the complete lattice defined

by xA,`y.

Infinite and totally ordered. Given a1, a2 P A and

a1 ăS a2, distpa1, a2q is the distance obtained

through a weak inverse of ˆ, i.e., a1 ˜a2 [22].8

Since, semirings can be defined over partial order

sets, they can be represented as lattice graphs. The

distance between two vertices in a lattice graph is

the number of edges in a shortest path connecting

them. To compute the dist function, we can use a

distance matrix that is a square matrix containing the

distances, taken pairwise, between the elements of a

poset. For example, distptTu, tA,R,Tuq in Figure

21 is 2.

We now define a lexicographic ordering which

takes advantage of Definition 5. The goal is to use

the distance of two elements from their least upper

bound (obtained through `) as additional informa-

tion to “stretch” the partial order into a “more” total

order, to be considered in the lexicographic order.

Definition 6 (Lexicographic product of semirings)

The lexicographic product of semirings

S1 “ xA1,`1,ˆ1,01,11y and S2 “
xA2,`2,ˆ2,02,12y, denoted as S1 ✄ S2, is

the semiring S “ xA,`,ˆ,0,1y where:

• The carrier of S is the Cartesian product of the

carries of S1 and S2, i.e., A “ A1 ˆ A2.

• The selection operator ` of S if given by:

8Please refer to [22] for a formal definition of ˜, which is

outside the scope of this paper.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 257 Volume 14, 2017

Table 2: The ranking of the top-ten matched WSs, based on the query represented in Figure 20.
Name WSBS θ σ Γ Rk

S6 q0 AddToBasket(code:string) q1; q1 AddToBas-

ket(code:string) q1; q1 Shipment(Address:String) q2 ; q2

Charge(AccountOnfo:string) q0

.88 1.0 .94 1

S3 q0 Login(IdInfo:String) q1; q1 AddToBasket(code:string) q2; q2

AddToBasket(code:string) q2; q2 Shipping(Address:String) q3 ;

q3 Charging(AccountInfo:string) q1; q1 Logout() q0

.89 .75 .82 2

S1 q0 AddItem(code:string) q1; q1 AddItem(code:string) q1; q1

Shipping(Address:String) q2 ; q2 Charge(AccountInfo:string) q0

.56 1.0 .78 3

S2 q0 AddToBasket(code:string) q1; q1 AddToBasket(code:string)

q1; q1 Shipment(Address:string) q0

.77 .67 .72 4

S7 q0 AddProduct(Prodcode:string) q1; q1 AddProd-

uct(Prodcode:string) q1; q1 charge(AccountInfo:string) q0

.49 .67 .58 5

S4 q0 AddItemToBasket(code:string) q1; q1 AddItemToBas-

ket(code:string) q1; q1 Charging(AccountInfo:string)

.44 .67 .56 6

S5 q0 Login(IdInfo:String) q1; q1 AddProduct(Prodcode:string)

q2; q2 AddProduct(Prodcode:string) q2; q2 Ship-

ment(Address:String) q3 ; q3 Payment(AccountInfo:string)

q1; q1 Logout()

.32 .75 .54 7

TrackShipment q0 ShippingInfo(Info:string) q0; .67 .33 .50 8

ItemBasketService q0 AddItemBasket(Itemcode:string) q1 ; q1 AddItemBas-

ket(Itemcode:String) q1 ; q1 checkout(Itemcode:String) q0

.31 .67 .49 9

purchase q0 sendPurchaseOrder(order:string) q1; q1 sendPurchase-

Order(order:string) q1; q1 shippingPT(Info:String) q0

.18 .67 .43 10

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 258 Volume 14, 2017

xa1, a2y ` xb1, b2y “

$

&

%

xa1, a2y if distpa1, lub1q ă distpb1, lub1q
xa1, a2y if a1 “ b1 and distpa2, lub2q ă distpb2, lub2q
undefined otherwise

where lub1 is the least upper bound of a1 and

b1 (a1 ` b1), and lub2 is the least upper bound

of a2 and b2 (a2 ` b2); distpq is defined in Def-

inition 5. We can even further refine the defini-

tion of our selection operator in Definition 6 by

choosing the element that is more distant from

their common greatest lower bound (glb) if two

elements are equidistant from their lub. Note

that two elements in A are always comparable

with respect to dist , while they may not be com-

parable in xA,`y.

• The composition operator ˆ of S is given by:

xa1, a2y ˆ xb1, b2y “ xa1 ˆ1 b1, a2 ˆ2 b2y

• 0 “ x01,02y and 1 “ x11,12y.

The notion of distance that we have defined in the

selection operator, is helpful in the case that two el-

ements are not directly comparable. Assume sev-

eral quality criteria of services are defined to rank

WSs. This criterion would be partially ordered be-

cause all of its elements are not comparable. Figure

21 shows the lattice graph of this criterion includ-

ing Availability (A), Reliability (R) and Throughput

(T). For elements directly related by the partial order,

for example tAu ă tA,Ru, the choice is clear, so

tA,Ru would be preferred in this comparison. How-

ever, we cannot compare some of these elements to

each other, for instance tAu and tR, T u. But us-

ing the dist function, tR, T u is preferred because the

distptR,Tu, tA,R,Tuq is 1, which is smaller than

distptAu, tA,R,Tuq (that is 2). In fact, we expect

that tR, T u would be better than tAu because it is

closer to the upper bound and satisfies more features.

We consider the lexicographic product operator on

semirings to be right associative, i.e., S1✄S2✄S3 “
S1 ✄ pS2 ✄ S3q. Accordingly, if A1, A2, and A3

are the carriers of semirings S1, S2, and S3, respec-

tively, for simplicity, we skip ordering parentheses

and denote the carrier of S “ S1 ✄ S2 ✄ S3 as

A “ A1 ˆA2 ˆA3, instead of A “ A1 ˆpA2 ˆA3q,

and denote the elements of A as xa1, a2, a3y instead

of xa1, xa2, a3yy.

Let SFunc, Srel, Sret, and Savl denote the

semirings for the functional requirements and the

QoS constraints for Reliability, Response-Time, and

Availability, respectively. Then, S “ SFunc✄Srel✄

Sret ✄ Savl is the semiring that we use to find the

best match for a query. The fact that SFunc appears

as the leftmost operand in the lexicographic product

that defines S ensures that we consider QoS proper-

ties of services in our ranking of candidates only if

their functional similarity scores are the same.

8 Evaluation

The evaluation of the tool is divided into two parts.

First, in subsection 8.1 we evaluate the performance

and scalability of the search engine in a distributed

implementation of the tool. Then, in subsection 8.2

we validate the adequacy of the tool by measuring its

information retrieval metrics.

8.1 Performance and Scalability

Distributed computing presents an alternative to

traditional centralised systems that can achieve

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 259 Volume 14, 2017

Figure 21: Lattice of subsets of tA,R, T u, partially

ordered by “is subset of”.

high-performance in executing heavy-workload

tasks [27]. In order to improve the performance

of our retrieval tool, we have designed a peer-to-

peer (P2P) model for its implementation on a net-

work of equivalent computer nodes. P2P systems of-

fer efficiency, scalability, decentralised control, self-

organisation, and symmetric communication [41]. In

the P2P model of the tool, every node contains a list

of services, as well as their searchable attributes for

discovery. A query is passed to all of the nodes, and

each node computes a list of similarity scores for its

own content that matches the query as search results

of our discovery tool. Each node sends its set of

computed similarity scores to an aggregator, which

merges the sets from multiple nodes to create a sin-

gle set of ranked search results. Aggregators, too,

send their results to other aggregators higher up in

a hierarchy, until they reach the top-level aggrega-

tor that presents its ranked results to the user. The

results of an aggregator node are directly compara-

ble, because it receives the absolute similarity scores

from different nodes. As an alternative, each node

can send only the ranking of services, and use an ag-

gregation function that weighs the ranking of each

service by the number of services in the correspond-

ing sender-node. In our implementation we adopted

the former approach, which is based on the absolute

similarity score.

The performance statistics that we describe below

are calculated for 1000 registered services. Table 3

shows the execution time and the speed-up to ob-

tain the similarity scores for the registered services,

which are distributed among 1 to 10 nodes. Table 3

shows that the minimum execution time is obtained

with 10 nodes, which is about 3.5 times smaller than

the execution time with a single node, i.e., without

distribution. The processing time needed for pars-

ing the WSDL documents and generating the WSBS

specifications is not considered in this performance

statistics because this parsing is executed only once

(in the registration step). The graph on the left in

Figure 22 shows how the execution time varies with

the number of nodes (processors). It shows that the

execution time is inversely related with the number

of distributed nodes. The graph on the right in Fig-

ure 22 shows the rate of speed-up, which is equal to

the execution time using 1 processor

the execution time using n processors

Lorem ipsum dolor sit amet, consectetuer adipiscing

elit. Ut purus elit, vestibulum ut, placerat ac, adip-

iscing vitae, felis. Curabitur dictum gravida mau-

ris. Nam arcu libero, nonummy eget, consectetuer id,

vulputate a, magna. Donec vehicula augue eu neque.

Pellentesque habitant morbi tristique senectus et ne-

tus et malesuada fames ac turpis egestas. Mauris ut

leo. Cras viverra metus rhoncus sem. Nulla et lec-

tus vestibulum urna fringilla ultrices. Phasellus eu

tellus sit amet tortor gravida placerat. Integer sapien

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 260 Volume 14, 2017

est, iaculis in, pretium quis, viverra ac, nunc. Prae-

sent eget sem vel leo ultrices bibendum. Aenean fau-

cibus. Morbi dolor nulla, malesuada eu, pulvinar

at, mollis ac, nulla. Curabitur auctor semper nulla.

Donec varius orci eget risus. Duis nibh mi, congue

eu, accumsan eleifend, sagittis quis, diam. Duis eget

orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sol-

licitudin vel, wisi. Morbi auctor lorem non justo.

Nam lacus libero, pretium at, lobortis vitae, ultricies

et, tellus. Donec aliquet, tortor sed accumsan biben-

dum, erat ligula aliquet magna, vitae ornare odio me-

tus a mi. Morbi ac orci et nisl hendrerit mollis. Sus-

pendisse ut massa. Cras nec ante. Pellentesque a

nulla. Cum sociis natoque penatibus et magnis dis

parturient montes, nascetur ridiculus mus. Aliquam

tincidunt urna. Nulla ullamcorper vestibulum turpis.

Pellentesque cursus luctus mauris.

Lorem ipsum dolor sit amet, consectetuer adip-

iscing elit. Ut purus elit, vestibulum ut, placerat

ac, adipiscing vitae, felis. Curabitur dictum gravida

mauris. Nam arcu libero, nonummy eget, con-

sectetuer id, vulputate a, magna. Donec vehicula

augue eu neque. Pellentesque habitant morbi tris-

tique senectus et netus et malesuada fames ac turpis

egestas. Mauris ut leo. Cras viverra metus rhon-

cus sem. Nulla et lectus vestibulum urna fringilla

ultrices. Phasellus eu tellus sit amet tortor gravida

placerat. Integer sapien est, iaculis in, pretium quis,

viverra ac, nunc. Praesent eget sem vel leo ultri-

ces bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur

auctor semper nulla. Donec varius orci eget risus.

Duis nibh mi, congue eu, accumsan eleifend, sagit-

tis quis, diam. Duis eget orci sit amet orci dignissim

rutrum.

Nam dui ligula, fringilla a, euismod sodales, sol-

licitudin vel, wisi. Morbi auctor lorem non justo.

Nam lacus libero, pretium at, lobortis vitae, ultricies

et, tellus. Donec aliquet, tortor sed accumsan biben-

dum, erat ligula aliquet magna, vitae ornare odio me-

tus a mi. Morbi ac orci et nisl hendrerit mollis. Sus-

pendisse ut massa. Cras nec ante. Pellentesque a

nulla. Cum sociis natoque penatibus et magnis dis

parturient montes, nascetur ridiculus mus. Aliquam

tincidunt urna. Nulla ullamcorper vestibulum turpis.

Pellentesque cursus luctus mauris.

8.2 Validation

We have evaluated the quality of the computed re-

sults according to the two most frequent and basic

metrics used to measure the effectiveness of infor-

mation retrieval: precision and recall [28]. Precision

(also called positive predictive value) is defined as

the number of relevant returned results divided by the

number of returned results, while recall (also known

as sensitivity) is measured as the number of relevant

returned results divided by the total number of rele-

vant entries in the database.

Let Rel be the set of relevant WSs, Ret be the set

of returned WSs, RetRel be the set of returned rele-

vant WSs (true positives), and RetRelk be the set of

relevant results in the top k returned WSs. More pre-

cisely, the parameters that we have adopted to eval-

uate the performance of our approach are defined as

follows:

Precision “ |RetRel |{|Ret |

Precisionk “ |RetRelk|{k

Recall “ |RetRel |{|Rel |

We have examined the results based on 20 test

queries. For each of these queries, we have man-

ually labelled our WSs in the database as relevant

or irrelevant. Since the queries had less than 10

results, we considered the precision at 2, 5 and 10

(parameter k). The average Precision2, Precision5

and Precision10 for the test queries are respectively

95%, 73.3% and 65.4%. This preliminary evaluation

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 261 Volume 14, 2017

Table 3: Evaluation of the distributed model by matching the achieved speed-up with respect to the number

of used nodes.
Number of nodes Execution time Speed-up

1 417 Millisecond 1

2 213 Millisecond 1,957746479

5 135 Millisecond 3,088888889

10 117 Millisecond 3,564102564

Figure 22: The graphs of execution time and speed-up rate for the example mentioned in Table 3.

is promising especially for stateful queries, although

for stateless queries our approach shows no advan-

tage compared with other approaches [39].

The Recall/Precision (R-P) curve is considered as

the most informative graph showing the effectiveness

of a search engine [18]. An ideal search engine has

a horizontal curve with a high precision value; a bad

search engine has a horizontal curve with a low pre-

cision value. The traditional approach to build a R-P

curve is the 11-point interpolated average precision,

where precision is measured at the 11 recall levels of

0.0, 0.1, 0.2, . . . , 1.0. For each recall level, we then

calculate the precision of the results that meet that

recall level of the test collection. For example, if the

number of relevant WSs (|Rel|) is 10, the number of

returned WSs (|Ret|) at recall level 0.1 would be the

minimum number of the top-ranked search results to

see 0.1 portion of |Rel|, i.e. the first relevant WS.

The blue curve in Figure 24 shows the R-P graph

of our tool (Beh-Search) for the 20 test queries,

where recall level of the graph varies from 0 to 100

percent. For instance, Table 4 shows the results of

search for one of the 20 queries to draw the R P

curve.

We have five relevant services in our database for

this query. As we see in Table 4, the first relevant

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 262 Volume 14, 2017

service (i.e., serviceSMS) appeared as the first top-

ranked discovered service, so the precision at the re-

call level 0.2 (i.e. 1{5) would be 100%. The preci-

sion for the second relevant service (i.e. recall level

0.4) is also 100%, but for the third one it is 60% be-

cause the third relevant service is the 5th top-ranked

service in the list. The precision at the recall levels

0.8 and 1.0 is respectively, 66.67 and 71.43.

Lorem ipsum dolor sit amet, consectetuer adip-

iscing elit. Ut purus elit, vestibulum ut, placerat

ac, adipiscing vitae, felis. Curabitur dictum gravida

mauris. Nam arcu libero, nonummy eget, con-

sectetuer id, vulputate a, magna. Donec vehicula

augue eu neque. Pellentesque habitant morbi tris-

tique senectus et netus et malesuada fames ac turpis

egestas. Mauris ut leo. Cras viverra metus rhon-

cus sem. Nulla et lectus vestibulum urna fringilla

ultrices. Phasellus eu tellus sit amet tortor gravida

placerat. Integer sapien est, iaculis in, pretium quis,

viverra ac, nunc. Praesent eget sem vel leo ultri-

ces bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur

auctor semper nulla. Donec varius orci eget risus.

Duis nibh mi, congue eu, accumsan eleifend, sagit-

tis quis, diam. Duis eget orci sit amet orci dignissim

rutrum.

Nam dui ligula, fringilla a, euismod sodales, sol-

licitudin vel, wisi. Morbi auctor lorem non justo.

Nam lacus libero, pretium at, lobortis vitae, ultricies

et, tellus. Donec aliquet, tortor sed accumsan biben-

dum, erat ligula aliquet magna, vitae ornare odio me-

tus a mi. Morbi ac orci et nisl hendrerit mollis. Sus-

pendisse ut massa. Cras nec ante. Pellentesque a

nulla. Cum sociis natoque penatibus et magnis dis

parturient montes, nascetur ridiculus mus. Aliquam

tincidunt urna. Nulla ullamcorper vestibulum turpis.

Pellentesque cursus luctus mauris.

Figure 23 shows one of the other queries that we

used for drawing the R-P curve. This query aimed

at finding the services that can search and apply for

jobs. According to the query behavior represented in

Figure 23, the intended service should first register

the client, then search for his/her desired jobs, and,

finally, apply for one of the retrieved jobs.

Lorem ipsum dolor sit amet, consectetuer adip-

iscing elit. Ut purus elit, vestibulum ut, placerat

ac, adipiscing vitae, felis. Curabitur dictum gravida

mauris. Nam arcu libero, nonummy eget, con-

sectetuer id, vulputate a, magna. Donec vehicula

augue eu neque. Pellentesque habitant morbi tris-

tique senectus et netus et malesuada fames ac turpis

egestas. Mauris ut leo. Cras viverra metus rhon-

cus sem. Nulla et lectus vestibulum urna fringilla

ultrices. Phasellus eu tellus sit amet tortor gravida

placerat. Integer sapien est, iaculis in, pretium quis,

viverra ac, nunc. Praesent eget sem vel leo ultri-

ces bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur

auctor semper nulla. Donec varius orci eget risus.

Duis nibh mi, congue eu, accumsan eleifend, sagit-

tis quis, diam. Duis eget orci sit amet orci dignissim

rutrum.

Nam dui ligula, fringilla a, euismod sodales, sol-

licitudin vel, wisi. Morbi auctor lorem non justo.

Nam lacus libero, pretium at, lobortis vitae, ultricies

et, tellus. Donec aliquet, tortor sed accumsan biben-

dum, erat ligula aliquet magna, vitae ornare odio me-

tus a mi. Morbi ac orci et nisl hendrerit mollis. Sus-

pendisse ut massa. Cras nec ante. Pellentesque a

nulla. Cum sociis natoque penatibus et magnis dis

parturient montes, nascetur ridiculus mus. Aliquam

tincidunt urna. Nulla ullamcorper vestibulum turpis.

Pellentesque cursus luctus mauris.

Table 5 shows the top ranked results of the query

represented in Figure 23. As we see in the table, the

first six top-ranked discovered services are relevant,

so the precision at recall levels 0.1, 0.2, . . . , 0.6 is

100%, which is very good. The precision at the next

recall levels, i.e., 0.7, 0.8 and 0.9 are still high (re-

spectively, 87%, 89%, and 90%). The precision at

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 263 Volume 14, 2017

Table 4: The top-ranked matched WSs, based on the query: q0 SendSMS q0
Rank Service Name WSBS Relevant Score Precision

1 ServiceSMS q0 SendSMS q0 R 1.0 100

2 BulkSMS q0 SendSMS q0 R 1.0 100

3 InfoService q0 SendSMSInfo q0 0.63

4 Server utf8 q0 SendSMS USC2 q0 0.59

5 SmsService q0 AddSMS q0 R 0.52 60

6 SmsWebService q0 SMS q0 R 0.50 66

7 BSWS q0 SubmitSms q0 R 0.42 71.43

8 ClickSmsV4 q0 GetSMSInfo q0 0.23

9 Price q0 GetSMSPrice q0 0.21

Figure 23: The query for discovering WSs that can

search and apply for jobs.

the last recall level, i.e., 1.0, which is the last rele-

vant service for this query, drops to 59%. This ser-

vice (behaviorally represented by q0 LookingForJob

q0) obtained 0.2 as the global similarity score, and is

at the 17th row of the table.

Lorem ipsum dolor sit amet, consectetuer adip-

iscing elit. Ut purus elit, vestibulum ut, placerat

ac, adipiscing vitae, felis. Curabitur dictum gravida

mauris. Nam arcu libero, nonummy eget, con-

sectetuer id, vulputate a, magna. Donec vehicula

augue eu neque. Pellentesque habitant morbi tris-

tique senectus et netus et malesuada fames ac turpis

egestas. Mauris ut leo. Cras viverra metus rhon-

cus sem. Nulla et lectus vestibulum urna fringilla

ultrices. Phasellus eu tellus sit amet tortor gravida

placerat. Integer sapien est, iaculis in, pretium quis,

viverra ac, nunc. Praesent eget sem vel leo ultri-

ces bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur

auctor semper nulla. Donec varius orci eget risus.

Duis nibh mi, congue eu, accumsan eleifend, sagit-

tis quis, diam. Duis eget orci sit amet orci dignissim

rutrum.

Nam dui ligula, fringilla a, euismod sodales, sol-

licitudin vel, wisi. Morbi auctor lorem non justo.

Nam lacus libero, pretium at, lobortis vitae, ultricies

et, tellus. Donec aliquet, tortor sed accumsan biben-

dum, erat ligula aliquet magna, vitae ornare odio me-

tus a mi. Morbi ac orci et nisl hendrerit mollis. Sus-

pendisse ut massa. Cras nec ante. Pellentesque a

nulla. Cum sociis natoque penatibus et magnis dis

parturient montes, nascetur ridiculus mus. Aliquam

tincidunt urna. Nulla ullamcorper vestibulum turpis.

Pellentesque cursus luctus mauris.

The top-ten ranked services in Table 2, which are

based on the query represented in Figure 20, is an-

other instance of the queries we used to draw our

R P curve. As we see in the table, the first seven

top ranked discovered services are relevant, so the

precision at recall levels 0.1, 0.2, . . . , 0.7 is 100%.

The precision at the next recall levels is also still

high, e.g., it is 89% at the recall level 0.8. We can

argue that the precision for multi-state queries are

generally better than those for single state queries,

which is the biggest advantage of our tool. The rea-

son is that the transition-similarity score is only a

part of the global similarity score, which is used for

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 264 Volume 14, 2017

Table 5: The top-ranked matched WSs, based on the query represented in Figure 23.
WSBS Relevant θ σ Γ Rk

q0 Register q1; q1 Search q2; q2 Search q2; q2 Apply q0 R .84 1.0 .92 1

q0 Register q1; q1 LookingForJob q2; q2 LookingForJob q2; q2

Apply q0

R .62 1.0 .81 2

q0 Search q1; q1 Search q1; q1 Apply q0 R .79 .67 .73 3

q0 login q1; q1 Register q2; q2 Search q3; q3 Search q3; q3

Apply q4; q4 logout q0

R .84 .6 .72 4

q0 login q1; q1 SearchJob q2; q2 SearchJob q2; q2 Submit q3; q3

Resubmit q2; q3 logout q0

R .53 .75 .64 5

q0 login q1; q1 Register q2; q2 LookingForJob q3; q3 Looking-

ForJob q3; q3 Apply q4; q4 logout q0

R .62 .6 .61 6

q0 Register q1; q1 Vote q2; q2 Vote q2; q2 Submit q0 .19 1.0 .59 7

q0 LookingForJob q1; q1 LookingForJob q1; q1 Apply q0 R .49 .67 .58 8

q0 login q1; q1 LookingForJob q2; q2 LookingForJob q2; q2

Apply q3; q3 Change q2; q3 logout q0

R .33 .75 .54 9

q0 SearchForJob q0 R .74 .33 .53 10

q0 login q1; q1 Vote q2; q2 Vote q2; q2 Submit q0 .02 1.0 .51 11

ranking of services. Therefore, if a service can be

matched behaviorally with a query but uses differ-

ent labels, it is still expected to obtain a high global

similarity score because it earns a good state similar-

ity score. For instance, assume the third ranked ser-

vice in Table 2 that names the operation of adding an

item to the shopping cart “AddItem”, while its name

is “AddToBasket” in the query. When compared

to the other services, e.g. the forth ranked service,

the transition-similarity score dropped but the state-

similarity score raises the global-similarity score.

This means that even in these cases the tool can

discover relevant services with a significant global-

similarity score.

The R-P graph for our tool (see Figure 24) shows

that for the first set of relevant results (i.e. at re-

call level 10%), precision is appropriate. Also pre-

cision for the last relevant results (i.e. at recall level

100%) is comparable with that of other existing ap-

proaches presented in [39]. Figure 24 also shows

the Recall/Precision comparison for the studied ap-

proaches in [39]. Note that our data set used to de-

rive our R-P curve is different from those used for

the approaches studied in [39]. The lack of widely

accepted benchmarks using stateful services and the

dearth of tools that work with such services makes it

not possible to have a meaningful direct comparison

of our R-P curve with those of the other tools.

Lorem ipsum dolor sit amet, consectetuer adip-

iscing elit. Ut purus elit, vestibulum ut, placerat

ac, adipiscing vitae, felis. Curabitur dictum gravida

mauris. Nam arcu libero, nonummy eget, con-

sectetuer id, vulputate a, magna. Donec vehicula

augue eu neque. Pellentesque habitant morbi tris-

tique senectus et netus et malesuada fames ac turpis

egestas. Mauris ut leo. Cras viverra metus rhon-

cus sem. Nulla et lectus vestibulum urna fringilla

ultrices. Phasellus eu tellus sit amet tortor gravida

placerat. Integer sapien est, iaculis in, pretium quis,

viverra ac, nunc. Praesent eget sem vel leo ultri-

ces bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur

auctor semper nulla. Donec varius orci eget risus.

Duis nibh mi, congue eu, accumsan eleifend, sagit-

tis quis, diam. Duis eget orci sit amet orci dignissim

rutrum.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 265 Volume 14, 2017

Figure 24: The R-P curve of some of related works.

Nam dui ligula, fringilla a, euismod sodales, sol-

licitudin vel, wisi. Morbi auctor lorem non justo.

Nam lacus libero, pretium at, lobortis vitae, ultricies

et, tellus. Donec aliquet, tortor sed accumsan biben-

dum, erat ligula aliquet magna, vitae ornare odio me-

tus a mi. Morbi ac orci et nisl hendrerit mollis. Sus-

pendisse ut massa. Cras nec ante. Pellentesque a

nulla. Cum sociis natoque penatibus et magnis dis

parturient montes, nascetur ridiculus mus. Aliquam

tincidunt urna. Nulla ullamcorper vestibulum turpis.

Pellentesque cursus luctus mauris.

9 Related Work

Compared to the work reported in the literature, the

solution in this paper seems more general, compact,

and comprehensive, because it can encompasses any

semiring-like metrics, and the whole framework is

expressively modelled and solved using Constraint

Programming. Moreover, elaborating on a formal

framework allows us to easily check properties of

services/queries (e.g., to model-check or bi/simulate

them [5]), or to use join and hide operators for their

composition and abstraction [5]. A first step towards

this work has been developed in [6]. Modelling

and verification of long-running transaction involv-

ing composed WSs proposed in [32] and [37] are

compatible with our framework. Sharing the same

underlying formal model also allows us to apply

model-based testing techniques such as in [33], and

compliance verification and analysis in [31]. Most of

the literature seems to report more ad-hoc engineered

and specific solutions, instead, which consequently,

are less amenable to formal reasoning.

Formalisms other than constraint automata have

been proposed to model the behavior of a service.

For example, session types, as a formalism for struc-

turing interactions and reasoning over communicat-

ing processes, can be applied as a model to describe

the behavior of services. A session is defined as a

logical unit of information exchanged among partic-

ipants that specifies the topic of conversation as well

as the sequence of the communicated messages [15].

Session types, which can be assigned to end-point

processes, describe the user view of an interaction.

In [16], the authors specify the behavior of compo-

nents as session types. As such, they can also be used

to describe the behavioral signature of services. We

choose to use constraint automata because they can

be easily extended to support soft constraints, and,

in particular, preferences. Moreover, constraint au-

tomata are human readable, and already adopted in

related tools, as [30].

In [43] the authors propose a new behavior model

for services using automata and logic formalisms.

Roughly, the model associates messages with activ-

ities and adopts the IOPR model (i.e., Input, Out-

put, Precondition, Result) in OWL-S9 to describe ac-

tivities. The authors use an automaton structure to

model service behavior. However, similarity-based

search is not mentioned in [43].

9OWL-S: Semantic Markup for Services, 2004:

www.w3.org/Submission/OWL-S/.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 266 Volume 14, 2017

In [47] the authors present an approach that sup-

ports service discovery based on structural and be-

havioral service models, as well as quality con-

straints and contextual information. Behaviors are

matched through a sub-graph isomorphism algo-

rithm, thus vertixes cannot be merged or deleted as

in an sub-graph epimorphism.

In [24] the problem of behavioral matching is

translated to a graph matching problem, and existing

algorithms are adapted for this purpose.

The model presented in [44] relies on a simple

and extensible keyword-based query language and

enables efficient retrieval of approximate results, in-

cluding approximate service compositions. Since

representing all possible compositions can result in

an exponentially-sized index, the authors investigate

clustering methods to provide a scalable mechanism

for service indexing.

In [9] the authors propose a crisp translation from

interface description of services to classical crisp

Constraint Satisfaction Problems (CSPs). The work

in [9] does not consider service behavior and it

does not support a quantitative reasoning on similar-

ity/preference involving different services.

In [45] a semiring-based framework is used to

model and compose QoS features of WSs. However,

no notion of similarity relationship is given in [45].

In [17], the authors propose a novel clustering al-

gorithm that groups names of parameters of service

operations into semantically meaningful concepts.

These concepts are then leveraged to determine sim-

ilarity of inputs (or outputs) of service operations.

In [38] the authors propose a framework of fuzzy

query languages for fuzzy ontologies, and present

query answering algorithms for these query lan-

guages over fuzzy DL-Lite ontologies.

In [25] the authors propose a metric to measure

the similarity of semantic services annotated with an

OWL ontology. They calculate similarity by defining

the intrinsic information value of a service descrip-

tion based on the “inferencibility” of each of OWL

Lite constructs.

The authors in [39] show a method of service re-

trieval called URBE (UDDI Registry By Example).

The retrieval is based on the evaluation of similarity

between the interfaces of WSs. The algorithm used

in URBE combines the analysis of the structure of a

WS and the terms used inside it.

Baresi et al. [8] introduce DREAM as an innova-

tive infrastructure for the distributed publication and

discovery of WSs. DREAM provides partial solu-

tions for users requests through a set of matchmakers

such as WSDL-based Matchmaker and XPath-based

matchmaker. The ability to adding new matchmak-

ers gives more flexibility to DREAM, but consider-

ing the experimental results, they should improve the

precision and recall without affecting the flexibility.

Moreover, this version of DREAM could not man-

age the behavioral and also non-functional aspects

of services.

In order to consider QoS metrics as additional cri-

teria to select services from a set of functionally

equivalent candidates, we can simply specify QoS

properties as meta-attributes. However, the seman-

tics of such schemes is too weak to allow reasoning

about QoS properties. In [36], the authors extend

constraint automata (CA) with Q-algebras to define

Quantitative Constraint Automata (QCA) to specify

the QoS properties of services for an optimized ser-

vice selection and composition. Also in [36], they in-

troduce Quasi-Classical Temporal Logic (QCTL) as

a logic for reasoning about both behavioral and QoS

aspects of services modelled by QCA. Because QCA

and our work share constraint automata as their base

model, we can extend our soft constraint automata

model by adopting the QCA extension of [36], which

will enable us to use QCTL logic for a richer form of

reasoning about the properties of services.

Preference modelling is an important issue in var-

ious fields such as economics, mathematics, infor-

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 267 Volume 14, 2017

matics, and even psychology. We may have to deal

with preferences when we have to make choices on

behalf of users [11].

In [21] the authors discuss soft constraint tech-

niques and using the lexicographic order for prefer-

ences. Their work is going to be pivotal for the use

of soft constraints for dealing with problems, which

use some criteria that can be satisfied with a fixed

order of importance.

Managing tradeoffs of the QoS preferences has

been addressed by [26] using a lexicographic based

specification language for expressing the QoS pref-

erences.

It is also addressed in [35] based on a model of

lexicographic semi-order. Although lexicographic

semi-order seems to work better in our context by

considering threshold for each criterion, unfortu-

nately it is not associative.

10 Conclusion

We have presented a tool for similarity-based discov-

ery of WS that is able to rank the service descrip-

tions in a database, in accordance with a similarity

score matching each with the description of a ser-

vice desired by a user. The formal framework be-

hind the tool consists of SCA [5], which can rep-

resent different high-level stateful software services

and queries. We can use SCA to formally reason on

queries (e.g., operational similarity for SCA intro-

duced in [5]). The tool is based on implementing

approximate operational-similarity evaluation with

constraints (see Section 6), which allows to quan-

titatively estimate the differences between two be-

haviors. Defining this problem as an SCSP makes it

parametric with respect to the chosen similarity met-

ric (i.e., a semiring), and allows using efficient AI

techniques for solving it: sub-graph isomorphism is

not known to be in P .

The presented tool has been developed using Java

and it can be integrated with the tool presented in

[30] with the ultimate goal to also automatically or-

chestrate the discovered services. We also present a

distributed model of our tool to improve performance

and scalability of the tool over large scale distributed

data sets describing service description data sets.

Our main intent has been to propose a for-

mal framework and a tool with an approximate

operational-similarity of behaviors at its heart, not

to directly compete against tools such as [39]. Al-

though such tools show higher precision than what

we have summarised in Section 5, they do not sup-

port behavior specification in their matching. Nev-

ertheless, in the future we plan to refine the per-

formance of our tool by incorporating a semantic

similarity-score for operation and parameter names,

using an appropriate ontology for services, such as

OWL-S.

References:

[1] Afsarmanesh, H., Sargolzaei, M., Shadi, M.:

Semi-automated software service integration

in virtual organisations. Enterprise Information

Systems 9(5-6), 528–555 (2015)

[2] Alonso, G., Casati, F., Kuno, H.A., Machiraju,

V.: Web Services - Concepts, Architectures and

Applications. Data-Centric Systems and Appli-

cations, Springer (2004)

[3] Arbab, F., Koehler, C., Maraikar, Z., Moon, Y.,

Proença, J.: Modeling, testing and executing

Reo connectors with the Eclipse Coordination

Tools. Tool demo session at FACS 8 (2008)

[4] Arbab, F., Rutten, J.J.M.M.: A coinductive

calculus of component connectors. In: Recent

Trends in Algebraic Development Techniques

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 268 Volume 14, 2017

(WADT) Revised Selected Papers. LNCS, vol.

2755, pp. 34–55. Springer (2002)

[5] Arbab, F., Santini, F.: Preference and

similarity-based behavioral discovery of ser-

vices. In: ter Beek, M.H., Lohmann, N. (eds.)

WS-FM. Lecture Notes in Computer Science,

vol. 7843, pp. 118–133. Springer (2012)

[6] Arbab, F., Santini, F., Bistarelli, S., Pirolandi,

D.: Towards a similarity-based web service

discovery through soft constraint satisfaction

problems. In: Proceedings of the 2nd Interna-

tional Workshop on Semantic Search over the

Web, Istanbul, Turkey, August 27, 2012. p. 2.

ACM (2012)

[7] Baier, C., Sirjani, M., Arbab, F., Rutten,

J.J.M.M.: Modeling component connectors in

Reo by constraint automata. Sci. Comput. Pro-

gram. 61(2), 75–113 (2006)

[8] Baresi, L., Miraz, M., Plebani, P.: A distributed

architecture for efficient web service discovery.

Service Oriented Computing and Applications

10(1), 1–17 (2016)

[9] Benbernou, S., Canaud, E., Pimont, S.: Seman-

tic web services discovery regarded as a con-

straint satisfaction problem. In: Flexible Query

Answering Systems, 6th International Confer-

ence. LNCS, vol. 3055, pp. 282–294. Springer

(2004)

[10] Bistarelli, S., Montanari, U., Rossi, F.:

Semiring-based constraint satisfaction and op-

timization. J. ACM 44(2), 201–236 (1997)

[11] Brafman, R., Domshlak, C.: Preference

handling-an introductory tutorial. AI magazine

30(1), 58 (2009)

[12] Changizi, B., Kokash, N., Arbab, F.: A Unified

Toolset for Business Process Model Formaliza-

tion. In: Proceedings of FESCA 2010 (2010)

[13] Cheatham, M., Hitzler, P.: String similarity

metrics for ontology alignment. In: The Se-

mantic Web - ISWC 2013 - 12th International

Semantic Web Conference. Lecture Notes in

Computer Science, vol. 8219, pp. 294–309.

Springer (2013)

[14] Chinnici, R., Moreau, J.J., Ryman, A., Weer-

awarana, S.: Web services description language

(wsdl) version 2.0 part 1: Core language. W3C

recommendation 26, 19 (2007)

[15] Dezani-Ciancaglini, M., DeLiguoro, U.: Ses-

sions and session types: an overview. In:

Web Services and Formal Methods, pp. 1–28.

Springer (2010)

[16] Dezani-Ciancaglini, M., Padovani, L., Pan-

tovic, J.: Session type isomorphisms. In:

PLACES. pp. 61–71 (2014)

[17] Dong, X., Halevy, A., Madhavan, J., Nemes,

E., Zhang, J.: Similarity search for web ser-

vices. In: Proceedings of Very large data

bases. vol. 30, pp. 372–383. VLDB Endow-

ment (2004)

[18] Dong, X., Halevy, A., Madhavan, J., Nemes,

E., Zhang, J.: Similarity search for web ser-

vices. In: Proceedings of the Thirtieth inter-

national conference on Very large data bases-

Volume 30. pp. 372–383. VLDB Endowment

(2004)

[19] Droste, M., Kuich, W., Vogler, H.: Hand-

book of Weighted Automata. Springer Publish-

ing Company, Incorporated, 1st edn. (2009)

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 269 Volume 14, 2017

[20] Fox, E.A., Shaw, J.A.: Combination of multi-

ple searches. NIST SPECIAL PUBLICATION

SP pp. 243–243 (1994)

[21] Gadducci, F., Hölzl, M., Monreale, G.V., Wirs-

ing, M.: Soft constraints for lexicographic or-

ders. In: Mexican International Conference

on Artificial Intelligence. pp. 68–79. Springer

(2013)

[22] Gadducci, F., Santini, F.: Residuation for bipo-

lar preferences in soft constraints. Inf. Process.

Lett. 118, 69–74 (2017)

[23] Gay, S., Fages, F., Martinez, T., Soliman, S.,

Solnon, C.: On the subgraph epimorphism

problem. Discrete Applied Mathematics 162,

214–228 (2014)

[24] Grigori, D., Corrales, J.C., Bouzeghoub, M.:

Behavioral matchmaking for service retrieval.

In: IEEE International Conference on Web Ser-

vices (ICWS). pp. 145–152. IEEE Computer

Society (2006)

[25] Hau, J., Lee, W., Darlington, J.: A seman-

tic similarity measure for semantic web ser-

vices. In: Web Service Semantics Workshop at

WWW (2005)

[26] Iordache, R., Moldoveanu, F.: A condi-

tional lexicographic approach for the elicita-

tion of qos preferences. In: OTM Confeder-

ated International Conferences” On the Move

to Meaningful Internet Systems”. pp. 182–193.

Springer (2012)

[27] Iosup, A., Sonmez, O., Anoep, S., Epema,

D.: The performance of bags-of-tasks in large-

scale distributed systems. In: Proceedings of

the 17th international symposium on High per-

formance distributed computing. pp. 97–108.

ACM (2008)

[28] Järvelin, K., Kekäläinen, J.: Ir evaluation meth-

ods for retrieving highly relevant documents.

In: Proceedings of the 23rd annual interna-

tional ACM SIGIR conference on Research and

development in information retrieval. pp. 41–

48. ACM (2000)

[29] Jongmans, S.S.T.Q., Santini, F., Sargolzaei, M.,

Arbab, F., Afsarmanesh, H.: Automatic code

generation for the orchestration of web services

with Reo. In: Paoli, F.D., Pimentel, E., Zavat-

taro, G. (eds.) ESOCC. Lecture Notes in Com-

puter Science, vol. 7592, pp. 1–16. Springer

(2012)

[30] Jongmans, S.S.T., Santini, F., Sargolzaei, M.,

Arbab, F., Afsarmanesh, H.: Orchestrating web

services using reo: from circuits and behav-

iors to automatically generated code. Service

Oriented Computing and Applications pp. 1–21

(2013)

[31] Kokash, N., Arbab, F.: Formal behavioral

modeling and compliance analysis for service-

oriented systems. In: de Boer, F.S., Bonsangue,

M.M., Madelain, E. (eds.) FMCO. Lecture

Notes in Computer Science, vol. 5751, pp. 21–

41. Springer (2008)

[32] Kokash, N., Arbab, F.: Formal design and ver-

ification of long-running transactions with ex-

tensible coordination tools. IEEE T. Services

Computing 6(2), 186–200 (2013)

[33] Kokash, N., Arbab, F., Changizi, B., Makhnist,

L.: Input-output conformance testing for

channel-based service connectors. In: Aceto,

L., Mousavi, M.R. (eds.) PACO. EPTCS,

vol. 60, pp. 19–35 (2011)

[34] Kopecky, J., Gomadam, K., Vitvar, T.: hrests:

An html microformat for describing restful

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 270 Volume 14, 2017

web services. In: Web Intelligence and In-

telligent Agent Technology, 2008. WI-IAT’08.

IEEE/WIC/ACM International Conference on.

vol. 1, pp. 619–625. IEEE (2008)

[35] Mariotti, M., Manzini, P., et al.: Choice by lex-

icographic semiorders. Theoretical Economics

7(1) (2012)

[36] Meng, S., Arbab, F.: QoS-driven service se-

lection and composition using quantitative con-

straint automata. Fundam. Inform. 95(1), 103–

128 (2009)

[37] Meng, S., Arbab, F.: A model for web service

coordination in long-running transactions. In:

SOSE. pp. 121–128. IEEE (2010)

[38] Pan, J.Z., Stamou, G., Stoilos, G., Taylor, S.,

Thomas, E.: Scalable querying services over

fuzzy ontologies. In: Proceedings of World

Wide Web. pp. 575–584. WWW ’08, ACM,

New York, NY, USA (2008)

[39] Plebani, P., Pernici, B.: Urbe: Web service

retrieval based on similarity evaluation. IEEE

Trans. on Knowl. and Data Eng. 21(11), 1629–

1642 (2009)

[40] Richardson, L., Ruby, S.: RESTful web ser-

vices. ” O’Reilly Media, Inc.” (2008)

[41] Rowstron, A., Druschel, P.: Pastry: Scalable,

decentralized object location, and routing for

large-scale peer-to-peer systems. In: Middle-

ware 2001. pp. 329–350. Springer (2001)

[42] le Clément de Saint-Marcq, V., Deville, Y.,

Solnon, C.: Constraint-based graph matching.

In: Gent, I.P. (ed.) CP. Lecture Notes in Com-

puter Science, vol. 5732, pp. 274–288. Springer

(2009)

[43] Shen, Z., Su, J.: Web service discovery based

on behavior signatures. In: Proceedings of the

2005 IEEE International Conference on Ser-

vices Computing - Volume 01. pp. 279–286.

SCC ’05, IEEE Computer Society, Washing-

ton, DC, USA (2005)

[44] Toch, E., Gal, A., Reinhartz-Berger, I., Dori,

D.: A semantic approach to approximate ser-

vice retrieval. ACM Trans. Internet Technol.

8(1) (Nov 2007)

[45] Zemni, M.A., Benbernou, S., Carro, M.: A soft

constraint-based approach to QoS-aware ser-

vice selection. In: Service-Oriented Computing

- 8th International Conference, ICSOC 2010.

LNCS, vol. 6470, pp. 596–602 (2010)

[46] Zimmer, P., Zimmer, M., Zimmer, B.: Fizzim

an open-source fsm design environment. En-

terprise Information Systems 9(5-6), 528–555

(2014)

[47] Zisman, A., Dooley, J., Spanoudakis, G.:

Proactive runtime service discovery. In: Pro-

ceedings of the 2008 IEEE International Con-

ference on Services Computing - Volume 1. pp.

237–245. SCC ’08, IEEE Computer Society,

Washington, DC, USA (2008)

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Mahdi Sargolzaei, Francesco Santini,
Farhad Arbab, Hamideh Afsarmanesh

E-ISSN: 2224-3402 271 Volume 14, 2017

